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Abstract
In this exploratory neuroimaging-proteomic study, we aimed to identify CSF proteins associ-

ated with AD and test their prognostic ability for disease classification and MCI to AD con-

version prediction. Our study sample consisted of 295 subjects with CSF multi-analyte

panel data and MRI at baseline downloaded from ADNI. Firstly, we tested the statistical

effects of CSF proteins (n = 83) to measures of brain atrophy, CSF biomarkers, ApoE geno-

type and cognitive decline. We found that several proteins (primarily CgA and FABP) were

related to either brain atrophy or CSF biomarkers. In relation to ApoE genotype, a unique

biochemical profile characterised by low CSF levels of Apo E was evident in ε4 carriers

compared to ε3 carriers. In an exploratory analysis, 3/83 proteins (SGOT, MCP-1, IL6r)

were also found to be mildly associated with cognitive decline in MCI subjects over a 4-year

period. Future studies are warranted to establish the validity of these proteins as prognostic

factors for cognitive decline. For disease classification, a subset of proteins (n = 24) com-

bined with MRI measurements and CSF biomarkers achieved an accuracy of 95.1% (Sensi-

tivity 87.7%; Specificity 94.3%; AUC 0.95) and accurately detected 94.1% of MCI subjects

progressing to AD at 12 months. The subset of proteins included FABP, CgA, MMP-2, and

PPP as strong predictors in the model. Our findings suggest that the marker of panel of pro-

teins identified here may be important candidates for improving the earlier detection of AD.

Further targeted proteomic and longitudinal studies would be required to validate these find-

ings with more generalisability.
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Introduction
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder pathologically character-
ised by lesions of misfolded proteins, the loss of synapses and an overall reduction in brain vol-
ume. There is accumulating evidence to suggest that the clinical symptoms of the disease are
preceded by a long presymptomatic phase (~15–20 years) of abnormal β-amyloid (Aβ) aggre-
gation in the form of extracellular senile plaques [1,2]. The neuropathology of the disease is
associated with the development of neurofibrillary tangles prior to the onset of cognitive
impairment and the subsequent emergence of full-blown dementia [3,4]. The failure of several
clinical trials assessing therapeutic strategies to target amyloid deposition has led to the impe-
tus to discover biomarkers earlier in the AD pathological cascade prior to the development of
cognitive symptoms.

One method is to study structural neuroimaging biomarkers of AD which have been advo-
cated for use in early diagnosis [5], as well as for predicting disease progression in a prodromal
form of the disease known as Mild Cognitive Impairment (MCI) [6]. Another rich source of
biomarkers can be found in analytes from cerebrospinal fluid (CSF), particularly, concentra-
tions of Aβ142, p-tau181 and t-tau which reflect biochemical changes associated with Aβ depo-
sition, neurofibrillary tangle formation, and neuronal cell death [7,8].

Several neuroimaging studies have since found that the combined use of MRI measures
from regions affected in AD and CSF biomarkers can provide mutually complimentary infor-
mation for disease classification and prediction [9,10]. Nevertheless, there still remains a sub-
stantial overlap in CSF biomarker concentrations between AD and cognitively normal (CN)
individuals with an increased risk of developing the disease [11]. Moreover, additional bio-
markers are still required to understand the exact temporospatial relationship between Aβ
deposition and tau neurodegeneration during different stages of the disease pathophysiology.
Early genetic and in-vivo experimental studies have suggested that markers of inflammation,
microglial activity and synaptic function may be important for reflecting biochemical changes
associated with the Aβ toxicity and tau neurodegeneration [12,13]. While some proteomic
studies using multiplex platforms have identified a number of protein candidates detected in
AD [14–16], few have been validated and tested in relation to well-established neuroimaging
endophenotypes of AD pathology. Discovering proteins in relation to established measures of
disease pathology may yield biologically important peripheral signatures associated with mech-
anisms early in the disease.

In this study we aimed to discover CSF proteins associated with AD pathophysiology by
testing the multiplex panel with established neuroimaging measures, CSF biomarkers of AD,
Apolipoprotein E (ApoE) genotype and cognitive decline. Most importantly, we aimed to
identify a subset of proteins from the multiplex panel in order to test its diagnostic utility with
existing AD biomarkers for disease classification and MCI to AD conversion prediction at fol-
low up.

Materials and Methods

Participants
Data used in this study was obtained from the ADNI database (adni.loni.ucla.edu). ADNI was
launched by the National Institute of Ageing (NIA) and is a multicenter project supported by
private pharmaceutical companies, and non-profit organisations for the development of bio-
markers in monitoring disease progression in MCI and AD [17]. ADNI subjects aged 55–90
from over 50 sites across the U.S and Canada participated in the research (for further informa-
tion, see www.adni-info.org). Written informed consent was given from all participants in the
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study and prior ethics committee approval was obtained from each participating site. A total of
295 subjects with baseline data that included structural imaging and multiplex CSF samples
were available for analysis and consisted of 142 subjects with MCI, 65 patients with AD, and 88
healthy control subjects.

CSF protein measurements
CSF Aβ1–42, T-tau and P-tau were measured at the ADNI Biomarker Core laboratory at the
University of Pennsylvania Medical Center, using the multiplex xMAP Luminex platform
(Luminex, Austin, TX, USA) with the INNOBIA AlzBio3 kit (Innogenetics, Ghent, Belgium)
[18,19].

CSF multiplex proteomic samples were measured for levels of 159 analytes using the
Human Discovery Multi-Analyte Profile (MAP) 1.0 panel and Luminex 100 platform devel-
oped by Rules Based Medicine, Inc. (RBM), (Austin, TX) [20]. This panel is based upon multi-
plex immunoassay technology to measure a range of inflammatory, metabolic, lipid, and other
disease relevant proteins. The protocol used to quantify CSF analytes is described in detail else-
where [21,22]. Of the 159 analytes, only those with<10% of missing values were quantifiable
leaving 83 in total for analysis. The remaining 76 analytes were mostly below the assay detec-
tion limit, or had other assay limitations. Each analyte has an individual standard curve with
between 6–8 reference standards. Each plate is run with 3 levels of QCs (low, medium and
high) for each analyte. A total of 16 of the CSF samples were retested using a separate never
before thawed replicate aliquot on the fifth of the five 96 well plates to provide blinded test/re-
test quality control data. Assays are qualified based on least detectable dose, precision, cross-
reactivity, dilutional linearity, spike recovery (assessment of accuracy), and test/re-test perfor-
mance. Cross validation to alternative methods is reported for some assays where feasible. Fur-
ther information on the process, aliquoting and storage of analytes is described in the ADNI
Biomarker Core Laboratory Standard Operating Procedures (http://adni.loni.usc.edu/wp-
content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf).
Further assay documentation and validation reports are available fromMyriad RBM (www.
myriadrbm.com). Distributions of data for individual CSF proteins were checked for normality
using Box-Cox methods and, when appropriate, transformed to approximate a normal distri-
bution. Information regarding the biological preparation of CSF samples and quality control
criteria of the RBM Human Discovery MAP panel can be found on the ADNI websites [23,24].
A complete list of the analytes is given in S1 Table.

Magnetic Resonance Imaging Data Acquisition and Analysis
Structural MRI images (at 1.5T) were acquired at multiple ADNI sites across the US and Can-
ada based on a standardized protocol [25]. The imaging protocol included a high resolution
sagittal 3D T1-weighted MPRAGE volume (voxel size 1.1 × 1.1 × 1.2 mm³). The MPRAGE vol-
ume was acquired using a custom pulse sequence specifically designed for the ADNI study to
ensure compatibility across scanners [26]. Full brain and skull coverage was required for all
MR images according to previously published quality control criteria [27,28].

Image analysis was carried out using the Freesurfer image analysis pipeline (version 5.1.0)
to produce 34 regional cortical thickness and 23 subcortical volumetric measures as previously
described [29,30]. All volumetric measures from each subject were normalized by the subject’s
intracranial volume while cortical thickness measures were used in their raw form [31]. Mea-
sures of hippocampal and entorhinal cortex volume were selected as key a priori regions to
reflect AD pathology. A previously validated MRI-based marker of AD and MCI known as
SPARE-AD (Spatial Pattern of Abnormalities for Recognition of Early AD) was also used as a
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neuroimaging marker of AD. Individualised scores of diagnostic and predictive value were
used for analysis. A complete list of regional MRI measures is given in S2 Table. Details of this
particular method have been widely published elsewhere [9,32,33].

Statistical Analysis
Firstly, the RBM panel of CSF proteins were tested in relation to regional MRI measurements
(hippocampal and entorhinal volume), an MRI-based measure known as SPARE-AD score
and CSF biomarkers (Aβ142, P-tau181, T-tau) using a Spearman rank partial correlation test.
This test was adjusted for covariates including age, gender, years of education and ApoE E4
genotype. Secondly, CSF proteins from the RBM panel were also tested in relation to different
ApoE polymorphisms (ε2 carriers, ε3 carriers and ε4 carriers) using a generalized linear model
adjusting for age, gender and years of education. Thirdly, to test the effect of CSF proteins on
longitudinal MMSE score, we used a linear mixed model approach. Global MMSE score was
used as the response variable and the time from baseline visit in months, CSF protein from the
RBM panel, age, sex, years of education and ApoE ε4 genotype were included as fixed effects.
Models contained a random intercept and slope. The applicability of our mixed models were
assessed by examining models with and without the random effect of data collection site, the
linearity of CSF proteins over time within subjects and the normality of model residuals using
diagnostic plots. All models were tested in both AD patients (n = 59) and MCI subjects
(n = 142) with serial MMSE measurements. As a large number of proteins from the RBM panel
were tested we used a false discovery rate correction to account for multiple comparisons.

A multivariate support vector machine (SVM) algorithm was applied to the ADNI cohort,
in an unbiased fashion, to distinguish AD patients from CN individuals. In particular, a linear
SVM algorithm was constructed using the LIBSVM implementation [34]. In the algorithm, the
parameter C (representing the error/trade off parameter used for adjusting separation error in
the creation of separation space) was optimized using 5-fold cross validation on the training
set. The grid search routine suggested by Hsu et al (2010) [35] was implemented to identify
optimal parameter settings for differentiating AD from CN individuals. A multi-kernel learn-
ing approach for linear SVM [36] was implemented for treating variables of a different nature.
A general framework for kernel methods used to integrate data from different modalities has
been described previously in more extensive detail [36–38].

To identify a subset of CSF proteins associated with AD, we adopted a recursive feature
elimination (RFE) wrapper. The final subset of CSF proteins (CSF RFE subset) were then com-
bined with CSF biomarkers and regional MRI measurements to test their utility for disease
classification. Classification accuracy in each of these models was evaluated using ten-fold
cross validation. Measures of accuracy, sensitivity, specificity, and area under the curve (AUC)
were used to compare AD vs. CN models.

MCI subjects were divided into subjects that progressed to an AD diagnosis (MCI-convert-
ers) and others that remained clinically stable over a 12 month follow up period (MCI non-
converters). Subsequently, models from the AD vs. CN comparisons were used as training clas-
sifiers to prospectively predict MCI to AD conversion in MCI converters (MCI-c), as well as
predicting MCI non-converters (MCI-nc) that remained stable at 12 months. Discriminant
scores from the model were then used to classify MCI subjects as either having an AD-like or
CN-like phenotype. The combined model (CSF RFE subset + CSF biomarkers + regional MRI
measures) was also used to predict MCI to AD conversion in moderately late MCI-c (subjects
that progressed to AD between 18–24 months follow up) and late MCI-c (subjects that pro-
gressed to AD at 36 months). MCI-nc predictions were also made using the combined model
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for subjects that remained clinically stable between 0–12 months, 18–24 months and 36
months follow up.

The R statistical software environment (v. 3.1.0; The R Foundation for Statistical Comput-
ing), was used to perform all statistical analyses.

Results

Demographic Characteristics
Baseline sample characteristics of the ADNI cohort for demographic, cognitive, MRI and CSF
biomarkers are presented by diagnostic group in Table 1. Significant differences between
groups were found in hippocampal and entorhinal volume, as well as, SPARE-AD score, CSF
biomarkers of AD, MMSE score and ApoE ε4 genotype. Subject age, gender and years of edu-
cation were not found to differ significantly between groups.

CSF proteins from the multiplex RBM panel associated with
neuroimaging markers of brain atrophy and CSF biomarkers of AD
Due to the exploratory nature of this study we first tested the association of the entire multiplex
panel of CSF proteins (n = 83) with neuroimaging and CSF biomarkers to identify candidates
related AD pathogenesis. Associations were tested using a partial spearman rank correlation
test that co-varied for the effects of age, gender, years of education and ApoE ε4 genotype. For
several proteins (n = 50) we found an association with either neuroimaging markers of brain
atrophy or CSF biomarkers of AD (Fig 1). Many proteins in this subset (n = 37) were also
found to be significantly associated with both P-tau181 and T-tau CSF levels. Reduced levels of
CgA were found to be significantly associated across all comparisons with neuroimaging and
CSF biomarkers, but only remained significant in association with hippocampal (p =<0.001)
and entorhinal volume (p = 0.008) after multiple comparison correction. Increased levels of
Fatty Acid Binding Protein (FABP) emerged as the most significantly associated with CSF lev-
els of P-tau181 and T-tau as well as SPARE-AD score. Results from our partial spearman rank
correlation test are displayed in S3 Table. Bear in mind most associations were mild and
reflected by p-values that were uncorrected for multiple comparisons.

CSF proteins associated with different ApoE gene polymorphisms
CSF proteins from the RBM panel were also tested in relation to the ApoE polymorphism
rather than diagnostic status. Significant differences in CSF levels were examined by ApoE
genotype (ε2 carriers, ε3 carriers and ε4 carriers). We found that 9 CSF proteins were associ-
ated with the overall effect of ApoE genotype (Apo E, FABP, FGF-4, IL-8, AGRP, MIF, IL-3,
ANG-2, and Osteopontin). However, only CSF levels of Apo E, IL-3 and MIF were found to
differ between ApoE groups. CSF levels of these proteins compared to each ApoE group are
shown in Fig 2. In particular, the strongest overall effect was observed for CSF levels of Apo- E
which passed multiple comparison correction (p = .00046; FDR corrected = .034). Pairwise
comparisons revealed that Apo-E levels were significantly lower in ε4 carriers irrespective of
diagnosis compared to ε2 carriers (t = -3.63; p =< .0001) and significantly lower in ε3 carriers
compared to ε2 carriers (t = -2.57; p = .027).

CSF proteins related to the rate of cognitive decline on longitudinal
MMSE score
We also tested the association of baseline CSF proteins with the rate of cognitive decline using
at least three or four serial measurements of MMSE score. Firstly, we tested this in a sample of
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Table 1. Demographic characteristics of the ADNI cohort.

AD (n = 65) MCI (n = 142) CN (n = 88) p-value

Age 74.6 ± 7.6 74.9 ± 7.3 75.8 ± 5.5 0.491

Gender (male/female) 29/36 47/95 44/46 0.061

Education (years) 15.9 ± 3.1 15.5 ± 3.1 15.5 ± 2.9 0.560

MMSE score 23.5 ± 1.9a,b 27.1 ± 1.7b 29.1 ± 1.0 <0.001

ApoE ε4 genotype (+ve/-ve) 46/19 76/66 22/66 <0.001

Hippocampal Volume (mL) 1.82 ± 0.4b 1.94 ± 0.3b 2.34 ± 0.3 <0.001

Entorhinal Volume (mL) 0.95 ± 0.2a,b 1.12 ± 0.2b 1.28 ± 0.2 <0.001

ICV (mL) 1314 ± 158 1328 ± 139 1290 ± 136 0.146

SPARE-AD score 1.21 ± 0.8a,b 0.81 ± 0.8b -1.5 ± 0.9 <0.001

Aβ1–42 140.4 ± 35.3a,b 159.6 ± 51.7b 205.7 ± 57.2 <0.001

t-tau 125.9 ± 60.3a,b 104.8 ± 52.5b 69.2 ± 27.9 <0.001

p-tau181 42.2 ± 20.7b 36.5 ± 16.1b 24.9 ± 13.2 <0.001

Data are represented as mean ± and standard deviation. AD = Alzheimer’s disease, MCI = Mild Cognitive Impairment, CN = cognitively normal

individuals, MMSE = Mini Mental State Examination, ICV = Intracranial Volume, SPARE-AD score = Spatial Pattern of Abnormalities for Recognition of

Early AD. Chi-square was used for gender and ApoE ε4 genotype comparison. One way ANOVA with Bonferroni post hoc test was used for continuous

measures.
a indicates significant compared to the MCI group.
b indicates significant compared to the CN group.

doi:10.1371/journal.pone.0134368.t001

Fig 1. Heatmap of baseline CSF proteins that were significantly associated with regional MRI measures, SPARE-AD score or CSF biomarkers in
AD patients and MCI subjects (n = 207).

doi:10.1371/journal.pone.0134368.g001
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AD patients (n = 59) and found no CSF proteins were able to significantly predict a longitudi-
nal change in MMSE score. However, in a sample of MCI subjects (n = 142) we found three
proteins (SGOT, MCP-1, and IL-6r) were able to significantly predict cognitive decline
(Table 2). Again, it should be noted that these associations were mild and no protein remained
significant after multiple comparison correction.

Disease Classification
The recursive feature elimination (RFE) wrapper method identified a subset of 24 CSF proteins
which best distinguished AD patients from CN individuals (Table 3). Overall, we found that
the inclusion of these CSF proteins from the RBM panel improved the accuracy and specificity
of models. In particular, combining the CSF RFE subset with CSF biomarkers resulted in an
accuracy of 84.3% and an AUC of 91% (Table 4). We found that combining the CSF RFE sub-
set improved the sensitivity in a model generated using CSF biomarkers from 70.8% to 83.1%

Fig 2. CSF proteins significantly associated with different ApoE gene polymorphisms (ε2 carriers, ε3 carriers, and ε4 carriers). (A) CSF levels of
ApoE protein between ApoE groups; (B) CSF levels of Interleukin-3 (IL-3) between ApoE groups and (C) CSF levels of Macrophage migration inhibitory
factor (MIF) between ApoE groups. *These units refer to data before transformation.

doi:10.1371/journal.pone.0134368.g002
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which was statistically significant (Venkatraman’s Test: Z = 2.94; p = .0042). Moreover, the
CSF RFE subset combined with CSF biomarkers and regional MRI measures, achieved an accu-
racy of 91.5% (SEN = 87.7%, SPE = 94.3%, AUC = 0.95) which was significantly better than
using CSF biomarkers alone (Z = 2.91; p = .0036) (Fig 3). In the combined model (CSF RFE
subset + CSF biomarkers + regional MRI measures) we found CgA, FABP, MMP-2, and PPP

Table 3. CSF proteins selected in the CSF RFE subset using a built-in importance measure (SVM-RFE
wrapper) for differentiating AD patients from CN individuals.

Rank CSF multi-analyte subset

1 Fatty acid binding protein (FABP)

2 Chromogranin-A (CgA)

3 Osteopontin

4 Pancreatic polypeptide (PPP)

5 Interleukin-3 (IL-3)

6 Resistin

7 Cancer Antigen 19–9 (CA-19-9)

8 Apolipoprotein E (Apo E)

9 Calcitonin

10 Hepatocyte Growth Factor (HGF)

11 Fibroblast Growth Factor 4 (FGF-4)

12 Matrix Metalloproteinase-3 (MMP-3)

13 C-Reactive Protein (CRP)

14 Adiponectin

15 AXL Receptor Tyrosine Kinase (AXL)

16 Endothelin-1 (ET-1)

17 Apolipoprotein(a) (Lp(a))

18 Pregnancy-Associated Plasma Protein A (PAPP-A)

19 CD 40 antigen (CD40)

20 Agouti-Related Protein (AGRP)

21 Myoglobin

22 Matrix Metalloproteinase-2 (MMP-2)

23 Thyroxine-Binding Globulin (TBG)

24 Plasminogen Activator Inhibitor 1 (PAI-1)

doi:10.1371/journal.pone.0134368.t003

Table 2. CSF proteins significantly predicting a longitudinal decline on MMSE score in a sample of
MCI subjects (n = 142).

Linear mixed effect models

CSF protein β S.E P-value

Serum Glutamic Oxaloacetic Transaminase (SGOT) 0.34 0.13 0.0074

Monocyte Chemotactic Protein 1 (MCP-1) -0.21 0.09 0.027

Interleukin-6 receptor (IL-6r) 0.20 0.08 0.022

Linear mixed effect model results are displayed as on b-coefficients (β), standard-error

(S.E) and P-values for the interaction terms between proteins and time (years from baseline).

Data were adjusted for age, gender, years of education and ApoE genotype as fixed effects and subject

code and site-id as random effects.

doi:10.1371/journal.pone.0134368.t002
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contributed most strongly toward the detection of AD. However, the regional MRI measures
and CSF biomarkers model gave the best result with an accuracy of 92.2% (SEN = 85.7%,
SPE = 96.4%, AUC = 0.96) but this was not found to be significantly better than the CSF RFE
subset combined with CSF biomarkers and regional MRI measures (Z = 0.38; p = 0.70). All
model results are shown in Table 4.

MCI to AD conversion prediction
Over a follow up period of 36 months, 72 MCI subjects (50.7%) from our sample converted to
an AD diagnosis. Table 5 shows the number of MCI subjects that were predicted as either AD-
like or CN-like at a 12 month follow-up interval using all AD vs. CN models.

Firstly, we tested all models in early MCI subjects who progressed to an AD diagnosis
between 0–12 months (n = 34) [Early MCI-c]. We found that the inclusion of the CSF RFE
subset with CSF biomarkers and regional MRI measures provided the best result, accurately
predicting 94.1% of MCI-c progressing to AD whereas the regional MRI measures and CSF
biomarker model was only able to achieve a prediction of 76.5%. Therefore, we further tested
the combined model in moderately late MCI-c (n = 26) who were also correctly predicted with
a 92.3% accuracy as progressing to AD, and late MCI-c (n = 12) who were predicted correctly
with an 82.4% accuracy. Fig 4a displays the predicted probabilities from the combined model
of MCI subjects that progressed to AD. For comparison, we also overlaid the predicted proba-
bilities of AD patients and CN individuals. The majority of subjects that converted to AD at
different follow up periods were found to already possess an AD-like phenotype at the prodro-
mal MCI stage (p> 0.05; Kolmogorov-Smirnov test).

In contrast, MCI-nc predictions were less accurate with predictions ranging from 57.4% to
25.0%. Over a 36 month follow up period 70 MCI subjects (49.3%) remained clinically stable.
The regional MRI measures model was found to yield the best prediction at a 12 month follow
up. For the combined model, Fig 4b displays an almost bimodal distribution of MCI-nc predic-
tive values, with some correctly predicted as CN-like and others predicted as having an AD-
like phenotype. Despite these subjects remaining clinically stable at their respective period of
follow up, some MCI subjects are expected to convert in the near future and as a result also dis-
play an AD-like phenotype at baseline. Further follow ups will determine whether these sub-
jects remain clinically stable or convert to an AD diagnosis.

Table 4. Accuracy, sensitivity, specificity and area under the curve of AD vs. CNmodels.

ACC (%) SEN (%) SPE (%) AUC

CSF RFE subset (n = 24) 72.6 70.8 73.9 0.80

CSF biomarkers 77.1 70.8 81.8 0.87

Regional MRI measures 87.6 81.5 92.1 0.93

CSF RFE subset + CSF biomarkers 83.0 83.1 83.0 0.90

CSF biomarkers + regional MRI measures 92.2 85.7 96.4 0.96

Combined 91.5 87.7 94.3 0.95

Data are percentages and confidence intervals are presented in parenthesis.

ACC = Accuracy, SENS = sensitivity, SPE = specificity, AUC = area under the curve.

The combined model includes regional MRI measures, CSF biomarkers of AD and the CSF RFE subset of

proteins (n = 24).

doi:10.1371/journal.pone.0134368.t004
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Fig 3. ROC curves from disease classification models for differentiating between AD and CN individuals.

doi:10.1371/journal.pone.0134368.g003

Table 5. MCI to AD conversion prediction at a one year follow up using the AD vs. CNmultivariate
models.

MCI-c Classification (n = 34) MCI-nc Classification
(n = 108)

AD like
(%)*

CN like
(%) **

AD like
(%)*

CN like
(%) **

CSF RFE subset (n = 24) 82.4 (28) 17.6 (6) 71.3 (71) 28.7 (31)

CSF biomarkers 73.5 (25) 26.5 (9) 56.5 (61) 43.5 (47)

Regional MRI measures 73.5 (25) 26.5 (9) 42.6 (46) 57.4 (64)

CSF RFE subset + CSF biomarkers 88.2 (30) 11.8 (4) 67.6 (73) 32.4 (35)

CSF biomarkers + regional MRI
measures

76.5 (26) 23.5(8) 38.9 (42) 61.1 (66)

Combined 94.1 (32) 5.9 (2) 75.0 (81) 25.0 (27)

AD = Alzheimer’s disease, MCI = Mild Cognitive Impairment, MCI-c = MCI converter, MCI-nc = MCI non-

converter, CN = Cognitively Normal.

*Sensitivity is the percentage of MCI-c subjects correctly classified as AD in bold.

**Specificity is the percentage of MCI-nc subjects correctly classified as CN in bold.

The combined model includes regional MRI measures, CSF biomarkers of AD and the CSF RFE subset of

proteins (n = 24).

doi:10.1371/journal.pone.0134368.t005

Multiplex CSF Proteins Associated with Brain Atrophy in AD

PLOSONE | DOI:10.1371/journal.pone.0134368 August 18, 2015 10 / 16



Discussion
In this neuroimaging-proteomic study there were a number of key findings. Firstly, we identi-
fied several CSF proteins (n = 50) related to neuroimaging phenotypes of brain atrophy and
CSF biomarkers of AD, suggesting that these candidates may be related to AD pathophysiol-
ogy. Second, a unique biochemical profile of CSF proteins was found to be associated with
ApoE genotype characterised by reduced levels of Apo E protein in ε4 carriers. Third, some
proteins (SGOT, MCP-1, and IL6-r) were found to be related to a longitudinal change in
MMSE score over a 4 year period. Although the statistical effects associated with this finding
were mild and no result passed multiple comparison correction, further studies will determine
whether they may serve as important prognostic factors related to the rate of cognitive decline.
More importantly, we showed that reducing the RBM panel to a subset of 24 CSF proteins
complemented existing AD biomarkers for AD detection and MCI to AD conversion
prediction.

Our findings were in agreement with some previous studies identifying a panel of candidate
proteins associated with AD [15,21,39]. In particular, our first finding showed that several pro-
teins were associated with brain atrophy and CSF biomarkers, however, levels of CgA and
FABP emerged as the most consistently present across most our comparisons. Although the
effects associated with these findings were mild, previous studies have linked these candidates
to AD pathophysiology [40,41]. For instance, we found elevated levels of FABP protein to be
significantly related to neuroimaging SPARE-AD score which is in agreement with previous
findings reporting elevated levels of FABP protein in AD and prodromal MCI subjects
[15,21,42]. Increased levels of CgA protein related to hippocampal and entorhinal volume has
also been previously linked to early synaptic dysfunction in AD [40], reduced microglial regu-
lation of synaptic function [43], and Aβ1–42 metabolism in CN individuals [44].

We also found a unique biochemical profile of CSF proteins was associated with different
ApoE gene polymorphisms. For instance, ApoE protein and IL-3 levels were reduced in ε4 car-
riers, whilst MIF protein levels were elevated. Previous studies have also reported a peripheral

Fig 4. Predictive values from the combined CSF RFE subset CSF biomarker and regional MRI measures model for MCI to AD conversion
prediction at several follow up timepoints. (A) Predictive values of MCI-c progressing to AD at different follow up timepoints overlaid with predictive values
of AD and CN individuals and (B) predictive values of MCI-nc at different follow up timepoints overlaid with predictive values of AD and CN individuals.

doi:10.1371/journal.pone.0134368.g004
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CSF signature associated with ApoE genotype [44] and similar findings have also been
observed in blood plasma [45]. Moreover, many of the CSF candidates previously described in
the literature (e.g. FABP, FGF-4, IL-8, AGRP, ANG-2, and Osteopontin) also showed mild
associations with ApoE genotype, suggesting that the biological variability of proteins identi-
fied in AD cases may also be in part driven by genotype status.

For differentiating between AD and CN individuals we found that a subset of proteins
(n = 24) from the RBMmultiplex panel improved the accuracy and performance of models but
was unable to achieve a better accuracy when regional MRI measures and CSF biomarkers
were combined. Despite this, the combination of regional MRI measures, CSF biomarkers
(Aβ1–42, T-tau and P-tau) and the CSF RFE subset achieved an accuracy of 91.5%. In this sub-
set, four proteins namely CgA, FABP, MMP-2, and PPP were the strongest predictors for dis-
tinguishing AD from CN individuals.

This is in agreement with previous studies showing that CSF candidates identified using
immunoassay panel technology can complement CSF biomarkers of AD for the earlier detec-
tion of AD [21,46]. Recent neuroimaging-proteomic studies have also shown several proteins
to be associated with longitudinal rates of brain atrophy [39], as well as whole brain atrophy
[47]. To our knowledge this is the first study to test whether CSF proteins from an immunoas-
say panel can complement CSF biomarkers and regional MRI measures for disease classifica-
tion and prediction. Previous studies have suggested that the use of conventional imaging, such
as MRI, combined with biomarkers from different modalities may be complimentary to the
early and specific diagnosis of AD [48,49]. Several studies have reported that this combined
approach improved AD disease classification [10,36] and future MCI to AD conversion predic-
tion [9,50].

For MCI to AD conversion prediction, the CSF RFE subset, CSF biomarker and regional
MRI measures model also gave the best results and outperformed all other models. The model
was particularly sensitive for correctly predicting MCI-c with an AD-like phenotype (Fig 4a)
suggesting that our panel of 24 proteins may also have the prognostic potential to detect pro-
dromal AD. However, the model failed to correctly detect MCI-nc, with a large proportion of
subjects being predicted as AD-like, suggesting that the model lacked specificity. Several previ-
ous studies on MCI to AD conversion prediction have also noted the heterogeneity of the
MCI-nc group using similar high dimensional pattern classification algorithms [10,51]. It is
anticipated that many MCI-nc will convert to AD in the near future. Although future studies
with longer follow up times will refine our estimates of specificity, the ability to detect MCI-nc
many years prior to clinical diagnosis could provide useful tools for an earlier diagnosis.

Despite some promising results, there exist a number of limitations to our findings. Firstly,
although we identified a number of CSF proteins showing promise in AD detection and MCI
to AD conversion prediction our results are somewhat limited by the inability to validate these
candidates in an independent cohort. Therefore future studies are warranted to further explore
the prognostic potential of the candidates identified here in other well-characterised prospec-
tive cohorts. Nonetheless, we do show that the panel of CSF proteins for detecting AD also
have a good prognostic potential for detecting AD in the prodromal or amnestic MCI stage.
Secondly, CSF proteins identified in this study were from a multiplex panel of proteins known
to be associated with microglial activity and synaptic function. It may be likely that an alterna-
tive set of CSF proteins unrelated to these processes could also show strong effects in detecting
AD and predicting MCI to AD conversion.

In summary, the relation of CSF proteins to key neuroimaging phenotypes and traditional
CSF biomarkers provides some evidence of their importance in reflecting early neuropathologi-
cal changes in AD pathogenesis. Combining a subset of proteins (n = 24) from the RBMmulti-
plex panel with established biomarkers in AD provides further evidence to implicate the role of
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peripheral CSF proteins for improving the accuracy and prognostic ability of biomarkers for
disease classification and progression. Future studies are warranted to further validate our find-
ings with more generalisability in other well-characterised independent cohorts.
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